Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Majewski, Marcelo [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/149906
|
Resumo: |
O aumento do uso de compósitos estruturais tem levado a uma preocupação constante com a confiabilidade destes materiais. Em particular, o processo de cura das resinas na fabricação é citado como um dos problemas mais significativos no processamento de compósitos estruturais. Assim, para que essa classe de materiais possa ser economicamente viável e atender às exigências dos padrões de qualidade do setor aeronáutico, tecnologias de processamento automatizado e novas formas de matéria-prima estão sendo desenvolvidas e implantadas na fabricação. Desta forma, o objetivo da presente pesquisa foi estudar a influência das propriedades térmicas dos materiais de moldes, utilizados no processamento de compósitos via RTM, nas propriedades finais dos laminados. Foram processadas três placas de compósitos com reforço não dobrável (NCF-non-crimp fabric) biaxial [+45°/-45°] via RTM: em molde de aço 1020, laminado 1; e em liga de alumínio 5052-F, laminados 2 e 3. Para verificar a influência dos materiais dos moldes nas propriedades finais, foram analisadas a tenacidade à fratura interlaminar em modo I e investigação das superfícies de fratura pelo Microscópio Eletronico de Varredura (MEV). O comportamento térmico estudado via análise térmica dinâmico-mecânica (DMA), que avaliou as diferenças no grau de cura dos laminados 1, 2 e 3 com a análise da Tg. Nos processamentos, evidenciou-se que o molde de alumínio apresentou maior controle e estabilidade térmica, enquanto que o molde de aço apresentou maior estabilidade dimensional. Pelo modo I, observou-se maior energia de iniciação de trinca (GIc) para o laminado 1 em relação aos laminados 2 e 3. Nas imagens de fratura no MEV constatou-se a influência da fração volumétrica de fibras e a quantidade de fiber bridging. No laminado 1, observou-se mechas de fibra sobre a costura e fibras rompidas originadas do fiber bridging, que foram responsáveis pela energia adicional exigida na propagação da trinca (GI). No laminado 2 observou-se acúmulo de resina e menor quantidade de fiber bridging, consequentemente, valores intermediários de GI, já no laminado 3 notou-se a ausência de fiber bridging, o que proporcionou a propagação da trinca no domínio da matriz, apresentando o menor valor GI entre os laminados. Nos dois últimos laminados a diminuição de GIc foi atribuida ao grau de cura da resina. Na qual observou-se as transições vítreas (Tg) próximas entre os laminados 1 e 3, e para o laminado 2 a Tg foi inferior, o que demonstrou efetiva correlação entre as características térmicas dos moldes com as propriedades físicas e mecânicas finais dos laminados compósitos obtidos via RTM. |