Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Pereira, Talita de Azevedo Coelho Furquim |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/153761
|
Resumo: |
Introdução: As feridas complexas apresentam difícil resolução e associam-se a perda cutânea extensa, infecções importantes, comprometimento da viabilidade dos tecidos e/ou associação com doenças sistêmicas que prejudicam os processos normais de cicatrização, cursam com elevada morbimortalidade e têm sido apontadas como grave problema de saúde pública. Na prática clínica, é importante avaliar as feridas e documentar a avaliação. O registro incompleto sobre o paciente e o tratamento em uso é apontado como um desafio no acompanhamento das feridas e também prejudica ações de gestão, pesquisa e educação. A incorporação de fotografias de feridas à pratica profissional, mostra-se como uma estratégia para auxiliar profissionais na observação, evolução e registro claro e preciso. O Optimum-Path Forest (OPF) é um framework para o desenvolvimento de técnicas de reconhecimento de padrões baseado em partições de caminhos ótimos e particularmente eficiente para a classificação de imagens. O classificador OPF gera resultados a partir do cruzamento das classes e características selecionadas. Objetivo: Descrever as etapas do desenvolvimento de um aplicativo para dispositivos móveis capaz de segmentar e classificar tecidos de feridas complexas baseado no Optimum-Path Forest (OPF) supervisionado. Método: Foi aplicada uma nova metodologia inteligente para análise e classificação de imagens de feridas complexas por meio de técnicas de processamento digital de imagens e aprendizado de máquina com o classificador de padrões Optimum-Path Forest (OPF) supervisionado. Criou-se o banco de imagens de 27 feridas complexas, que foram rotuladas por quatro especialistas conforme a classificação dos tecidos em quatro classes: granulação (vermelho), tecido fibrinóide (amarelo), necrose (preto) e hematoma (roxo), gerando 108 imagens rotuladas. Acrescentou-se duas classes: branco (o que está na foto, exceto o leito da ferida) e dúvida (divergência na classificação pelos profissionais). O classificador OPF foi treinado a partir dessas 108 imagens. Aplicou-se o OPF às imagens de feridas e verificou-se a acurácia. Em seguida, iniciou-se a construção do aplicativo. Resultados e Discussão: O presente estudo desenvolveu um esquema de classificação de tecido de feridas assistido por computador para avaliação e gerenciamento de feridas complexas, a partir de fotos de feridas da câmera digital de um smartphone. A aplicação do OPF a feridas complexas trouxe como resultado uma acurácia de 77,52% ± 6,14. Com esta ferramenta, foi desenvolvido como produto desta pesquisa um aplicativo para segmentação, classificação de tecidos e mensuração de feridas complexas. O aplicativo gera um relatório no formato Portable Document Format (PDF) que pode ser enviado por e-mail, impresso ou anexado a prontuário eletrônico compatível. Conclusão: Foi construído um banco com 27 imagens de feridas complexas, que quatro profissionais rotularam para treinamento do classificador OPF, aplicou-se o OPF às imagens de feridas complexas, avaliou-se a acurácia deste processo e desenvolveu-se um aplicativo para dispositivos móveis com as funções de segmentação da ferida, classificação de tecidos e mensuração da ferida. Os resultados mostraram que o valor da acurácia obtido na análise computacional teve valor significativo, equiparando-se a avaliação de especialistas em feridas. Comparando com estudos similares, a análise computacional de feridas mostrou-se com menor variabilidade em relação a avaliação de profissionais, sugerindo que a incorporação desta tecnologia na prática clínica favoreça o cuidado em saúde do paciente com feridas complexas, além de fornecer dados para a gestão, ensino e pesquisa. |