Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Tófoli, Marielena Fonseca [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/151191
|
Resumo: |
O problema de Fluxo de Potência Ótimo Reativo (FPOR) tem como objetivo otimizar um critério associado a potência reativa do sistema elétrico, levando em conta os limites físicos e técnicos-operacionais do mesmo. O problema de FPOR é formulado como um problema de programação não-linear com variáveis contínuas e discretas. Em muitos trabalhos da literatura, as variáveis discretas do problema de FPOR são consideradas como contínuas e a solução obtida é ajustada para o valor discreto mais próximo do conjunto de valores discretos pré-estabelecidos. Tal abordagem descaracteriza a representação real do problema associado ao sistema elétrico, além de resultar em soluções não ótimas ou até mesmo em soluções infactíveis. Este trabalho propõe uma abordagem de solução para tratar as variáveis discretas do problema de FPOR. Utiliza-se uma função penalidade senoidal que penaliza as variáveis discretas quando estas assumem valores que não pertencem ao conjunto discreto pré-estabelecido. A metodologia geral de solução proposta, utiliza métodos de pontos interiores e exteriores em conjunto com o método de penalidade para o tratamento das variáveis discretas. Mostra-se que a função penalidade senoidal introduz dificuldades para a convergência do método de pontos interiores e exteriores para pontos de mínimos. Para a correção deste problema, propõe-se uma estratégia de correção de inércia de modo a garantir a obtenção de mínimos locais do problema penalizado. O método de solução proposto foi implementado em Matlab e aplicado aos sistemas elétricos IEEE 14, 30, 57 e 118 barras. Os resultados obtidos evidenciam a eficiência da abordagem proposta. |