Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Silva, Letícia dos Santos [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/152881
|
Resumo: |
Neste trabalho mostra-se a existência de solução de variação limitada para um problema envolvendo o operador 1− Laplaciano em um domínio exterior com condição de fronteira de Dirichlet. Para isso, será usada uma versão do Teorema do Passo da Montanha adequada a funcionais localmente lipschitzianos. As dificuldades na implementação de métodos variacionais no espaço das funções de variação limitada são múltiplas, entre elas, a falta de reflexividade, dificuldade de se usar condições de compacidade como a de Palais-Smale e ainda a falta de regularidade do funcional energia. |