Comportamento assintótico e controlabilidade exata para a equação de Klein-Gordon

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Nunes, Ruikson Sillas de Oliveira [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/100070
Resumo: Neste trabalho resolvemos o problema de controlabilidade exata na fronteira para a equação linear de Klein-Gordon em domínios limitadosΩ deR N , N≥2, com fronteira suave por partes e sem cuspides. Para dados iniciais emH 1 (Ω)×L 2 (Ω) obtemos controle do tipo Neuman, de quadrado integr´avel, atuando em toda a fronteira do domínio em tempo próximo ao diâmetro de Ω. Inicialmente provamos que a energia da solução do problema de Cauchy para a referida equação decai localmente numa taxa polinomial. Em seguida, estendendo a solução do problema de Cauchy para tempo complexo provamos que o operador solução associado ao problema de Cauchy é analítico num setor adequado do plano complexo. Utilizando o decaimento de energia, a analitidade do operador solução e argumentos introduzidos por D. L. Russell e J. Lagnese nos anos setenta do século passado obtemos o resultado desejado