Desenvolvimento de um sistema de coleta de dados ambientais em ambiente protegido

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Rocha, Luis Augusto Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/217578
Resumo: As mudanças climáticas estão afetando a produtividade agrícola em nível global, o que faz necessário novas pesquisas em meios produtivos mais sustentáveis. Desta forma, é pertinente destacar que a produção de alimentos em estufas é um dos possíveis caminhos para uma intensificação da produção de forma sustentável, podendo obter uma eficiência até 10 vezes maior por área quando em comparação com a produção em campo aberto. A possibilidade de migrar o sistema de produção de campo para estufas ainda é uma barreira para pequenos produtores, pois seu custo de implementação estrutural e de monitoramento nem sempre é viável. Um dos grandes pontos positivos do cultivo protegido é o controle das variáveis microclimáticas, sendo o monitoramento dessas variáveis efetuado por dispositivos produzidos por empresas como WIDITEC, Vaisala ou Campbell, necessitando de um custo inicial de investimento muito superior ao que um produtor de pequeno porte pode custear. Neste sentido, é pertinente salientar que inovações tecnológicas favorecem o desenvolvimento de novas soluções, podendo estas serem implementadas com sensores de baixo custo, ampliando assim a acessibilidade para pequenos produtores. Dentro deste contexto, o presente estudo apresenta o desenvolvimento de um sistema de coleta de dados ambientais de baixo custo comparando dois modelos de calibração efetuados por regressões polinomiais e redes neurais artificiais, utilizando um sensor meteorológico de referência (Vaisala modelo HMP45C) para coleta das variáveis temperatura do ar e umidade relativa do ar. O experimento foi instalado em casa de vegetação no campus da UNESP de Botucatu-SP, os sensores foram instalados no abrigo meteorológico construído por meio de impressão 3D, as aferições deram-se no período de 13 de setembro de 2018 e estenderam-se até o dia 11 de fevereiro de 2019 em intervalos de cinco segundos, resultando em médias por minuto. Dentro desse período, buscou-se levantar os dias em que ocorressem as maiores variações, obtendo-se, então, o período de início às 12:00:00 do dia 11/11/2018 até 10:20:00 do dia 15/11/2018. Conclui-se que o sensor BME280 apresenta o melhor desempenho, com erro médio absoluto (MAE) de 0,64 °C, erro quadrático médio (MSE) de 1,38 °C, coeficiente de determinação de R²: 0,925 para temperatura e erro médio absoluto (MAE) de 4,14% UR, erro quadrático médio (MSE) de 29,39% UR, coeficiente de determinação de R²: 0,871 para umidade relativa do ar. Quando comparado às metodologias de ajustes dos sensores utilizando regressões polinomiais e redes neurais, foi possível verificar que a aplicação de redes neurais apresentou os melhores ajustes em todos os casos.