Estimativa da radiação solar ultravioleta em Botucatu/SP Brasil utilizando técnicas de aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Almeida, Thiago do Nascimento Santana de [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/90698
Resumo: O presente trabalho tem como objetivo avaliar a estimação da radiação solar ultravioleta diária (UV) utilizando técnicas de aprendizado de máquina em Botucatu/SP/Brasil. Para a geração dos modelos foram utilizadas as redes neurais artificiais com função linear (RNA), a máquina de vetores de suporte com função linear (SVM-Linear) e a máquina de vetores de suporte com função RBF (SVM-RBF). Como entrada, para cada uma das técnicas, foram testados cinco grupos contendo diferentes variáveis meteorológicas medidas como rotina na estação de radiometria solar de Botucatu. A maior precisão na estimação da UV foi obtida utilizando a SVM-RBF e, como variáveis de entrada, foram utilizados dados de insolação, umidade relativa, temperatura do ar, precipitação, fotoperíodo, radiação solar no topo da atmosfera, radiação ultravioleta no topo da atmosfera, radiação solar global, transmissividade atmosférica e massa ótica relativa. Este modelo apresentou MBE = 0,321%; RMSE = 5,712%; d = 0.991 e R² = 0.969, porém o conjunto de entradas utilizando apenas a radiação global, radiação solar no topo da atmosfera e radiação ultravioleta no topo da atmosfera merece atenção por apresentar resultados próximos a partir de apenas uma variável medida (radiação global) e duas calculadas. Este grupo apresentou MBE = 1,614%; RMSE = 6,749%; d= 0,989 e R² = 0,959. Tais resultados foram comparados com modelos encontrados na literatura e se mostraram equivalentes aos que utilizaram técnicas de aprendizado de máquina para estimar a radiação UV em outras cidades e superiores aos modelos estatísticos gerados com o intuito de estimar a UV para a cidade de Botucatu