Redes neurais convolucionais para predição de probabilidade de erro de bit em sistemas de comunicações ópticas coerentes digitais limitados por modulação de fase não linear

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Silva, Lucas Marim da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/235414
Resumo: Neste trabalho são desenvolvidas técnicas para estimar a probabilidade de erro de bit (BER) em sistemas de comunicações ópticas digitais coerentes utilizando redes neurais convolucionais (CNNs). A estimativa é performada por meio do processamento histogramas de constelações de sinais por um algoritmo de regressão, capaz de generalizar a estimativa para redes ópticas passivas (PONs) com diferentes comprimentos de enlace e valores de potência de transmissão. Os resultados revelam que, utilizando uma CNN capaz de processar histogramas compostos por 10.000 símbolos e 64 bins, o erro entre o valor médio de BER estimado e esperado foi igual ou inferior a 10.87% para uma PON de 150 km considerando a faixa de valores de potência em que o sistema é limitado por modulação de fase não linear. O custo computacional necessário para realizar uma estimativa de BER utilizando a CNN descrita é de 195,61 x 10^6 operações de ponto flutuante.