Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Silva, Lucas Marim da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/235414
|
Resumo: |
Neste trabalho são desenvolvidas técnicas para estimar a probabilidade de erro de bit (BER) em sistemas de comunicações ópticas digitais coerentes utilizando redes neurais convolucionais (CNNs). A estimativa é performada por meio do processamento histogramas de constelações de sinais por um algoritmo de regressão, capaz de generalizar a estimativa para redes ópticas passivas (PONs) com diferentes comprimentos de enlace e valores de potência de transmissão. Os resultados revelam que, utilizando uma CNN capaz de processar histogramas compostos por 10.000 símbolos e 64 bins, o erro entre o valor médio de BER estimado e esperado foi igual ou inferior a 10.87% para uma PON de 150 km considerando a faixa de valores de potência em que o sistema é limitado por modulação de fase não linear. O custo computacional necessário para realizar uma estimativa de BER utilizando a CNN descrita é de 195,61 x 10^6 operações de ponto flutuante. |