Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Gonçalves, Gustavo José Corrêa [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/150701
|
Resumo: |
O uso de técnicas de controle preditivo e de sistemas inteligentes na resolução de problemas de controle de grande complexidade tem crescido significativamente na última década. Parte disso se deve ao fato destas abordagens já terem sido utilizadas com sucesso em uma vasta gama de aplicações, demonstrando sua robustez e eficiência. Porém, o uso destas técnicas ainda é pequeno quando comparado com o controle PID (proporcional integral derivativo) clássico, ainda que apresentem resultados melhores. Assim, a maioria das publicações presentes na literatura que utilizam estas técnicas de controle mais sofisticadas tem como objetivo resolver um problema específico de controle. Para isso, em geral, adota-se uma determinada abordagem sem que necessariamente se faça uma avaliação a respeito de qual dos métodos existentes seria o mais eficiente, uma vez que o foco é apenas a resolução do problema. Nesse contexto, o objetivo deste trabalho foi avaliar o desempenho de três das técnicas de controle inteligente e/ou preditivo mais aceitas para o controle de processos industriais frente ao controlador PID clássico, de uso generalizado na indústria. Mais especificamente, optou-se por utilizar o controlador MPC, o controlador Fuzzy e o controlador Neural Preditivo para o controle de um processo industrial e, então, avaliar o desempenho por meio das métricas ISE e ITSE, além de comparar o sobressinal máximo, erro estacionário e tempo de acomodação. Por fim, os resultados de desempenho de cada controlador foram confrontados com o controlador PID clássico. Os resultados indicaram que os controladores com melhor desempenho foram os controladores MPC e fuzzy de duas entradas, apresentando melhores resultados quando comparados com o controlador PID. Ainda, observou-se que o controlador fuzzy de uma entrada e preditivo neural não foram capazes de controlar o sistema em todos os patamares considerados. |