Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Nagaoka, Marilda da Penha Teixeira [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/101766
|
Resumo: |
A co-geração de energia elétrica excedente por meio do aproveitamento do bagaço de cana-de-açúcar tem sido considerada uma alternativa importante na diversificação de fontes de geração de energia elétrica no Brasil, considerando-se as vantagens em relação à grande produção de matéria prima, menores custos de geração de energia e a possibilidade de reduzir o ônus dos investimentos em geração de energia do setor público. Apesar do grande potencial apresentado por esta fonte alternativa de energia, o mercado para a energia elétrica co-gerada está ainda hoje, sujeito a um ambiente de grande risco e incerteza, seja decorrente de condições do mercado de energia ou da produção. Este trabalho teve por objetivos analisar a viabilidade econômica de um projeto de investimento em co-geração de energia elétrica em uma usina sucroalcooleira na região Oeste do estado de São Paulo,com vistas à comercialização de excedentes, sob condições de risco, utilizando o algoritmo de Redes Neurais Artificiais. Procurou-se também testar a convergência dos resultados obtidos por este método com outro mais tradicionalmente utilizado em análise de risco para a determinação dos indicadores de viabilidade econômica do investimento. Os indicadores utilizados foram Valor Atual Líquido (VAL); Taxa Interna de Retorno (TIR); Relação Benefício - Custo (RBC); Payback Simples (PBS) e Payback Econômico (PBE). A análise foi realizada considerando seis cenários, considerando a possibilidade ou não de obtenção de financiamento e diferentes níveis de eficiência de queima do bagaço. No método de Redes Neurais Artificiais, as redes foram alimentadas com as seguintes variáveis de entrada: valor do investimento; despesas com juros e amortização; despesa com aquisição e transporte do bagaço e receita operacional, tendo como variável de saída o fluxo líquido de caixa. |