Aplicação de redes neurais em análise de viabilidade econômica de co-geração de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Nagaoka, Marilda da Penha Teixeira [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/101766
Resumo: A co-geração de energia elétrica excedente por meio do aproveitamento do bagaço de cana-de-açúcar tem sido considerada uma alternativa importante na diversificação de fontes de geração de energia elétrica no Brasil, considerando-se as vantagens em relação à grande produção de matéria prima, menores custos de geração de energia e a possibilidade de reduzir o ônus dos investimentos em geração de energia do setor público. Apesar do grande potencial apresentado por esta fonte alternativa de energia, o mercado para a energia elétrica co-gerada está ainda hoje, sujeito a um ambiente de grande risco e incerteza, seja decorrente de condições do mercado de energia ou da produção. Este trabalho teve por objetivos analisar a viabilidade econômica de um projeto de investimento em co-geração de energia elétrica em uma usina sucroalcooleira na região Oeste do estado de São Paulo,com vistas à comercialização de excedentes, sob condições de risco, utilizando o algoritmo de Redes Neurais Artificiais. Procurou-se também testar a convergência dos resultados obtidos por este método com outro mais tradicionalmente utilizado em análise de risco para a determinação dos indicadores de viabilidade econômica do investimento. Os indicadores utilizados foram Valor Atual Líquido (VAL); Taxa Interna de Retorno (TIR); Relação Benefício - Custo (RBC); Payback Simples (PBS) e Payback Econômico (PBE). A análise foi realizada considerando seis cenários, considerando a possibilidade ou não de obtenção de financiamento e diferentes níveis de eficiência de queima do bagaço. No método de Redes Neurais Artificiais, as redes foram alimentadas com as seguintes variáveis de entrada: valor do investimento; despesas com juros e amortização; despesa com aquisição e transporte do bagaço e receita operacional, tendo como variável de saída o fluxo líquido de caixa.