Estudo da efetividade da atenuação natural de compostos BTEX em área contaminada por querosene de aviação
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11449/138449 http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/03-05-2016/000864233.pdf |
Resumo: | A jet fuel contaminated site has been monitored since 2005 with quarterly frequency for sampling and analysis of monoramatic organic compounds, physical chemistry parameters and natural attenuation indicators to help understand active biodegradation processes. In the source zone a depletion trend of BTEX compounds is related to BTEX reduction in the of LNAPL compounds. In other regions has been observed that BTEX concentration in aqueous phase correlates well with water table fluctuation. Through continuous monitoring and numerical modeling it was possible to observe mass of BTEX is strongly controlled by water table fluctuation. Even under water table fluctuation regime, BTEX plume is stabilized in a very narrow zone as result of short halflife of these compounds in the study area. The elevated biodegradation rates estimated using numerical simulations are indicative of high biodegradation kinetic as well as balanced importance of Fe(III) reduction and methanogenesis as mechanisms of BTEX destruction in the study area. Reactive transport modeling was capable of reproducing the geochemical evolution of groundwater using the attributed reactions as well as estimating the reaction kinetics. The main contribution of this work was to evaluate the effectiveness of natural attenuation in lateritic aquifers, understanding the mechanisms of LNAPL solubilization and mass variations of the dissolved phase depending on the water level, and to evaluate the biodegradation of monoaromatic compounds under a geochemical perspective |