Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Silva, Thays Aparecida de Abreu [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/87107
|
Resumo: |
Atualmente os sistemas elétricos de potência crescem em tamanho e complexidade e se faz necessário criar alternativas para minimizar o custo total de geração e operação. A previsão de cargas é uma tarefa importante para o planejamento e operação dos sistemas elétricos, pois dela dependem outras tarefas como despacho econômico, fluxo de potência, análise de estabilidade, entre outras. Para tanto esta tarefa deve ser precisa para que o sistema opere de forma segura e confiável. A precisão da previsão é de grande importância já que é através dela que é estabelecida quando e quanto de capacidade de geração e transmissão deve-se dispor para atender a carga prevista sem interrupções no fornecimento. O objetivo deste trabalho é desenvolver um modelo híbrido utilizando os modelos ARIMA de Box & Jenkins e Redes Neurais Artificiais com treinamento realizado pelo algoritmo de Levenberg-Marquartd. Este modelo será utilizado com a finalidade de melhorar a precisão dos resultados com relação à previsão de cargas elétricas a curto prazo. Os resultados obtidos através da metodologia proposta, modelo híbrido de regressão com redes neurais artificiais, foram comparados com demais trabalhos da literatura. É importante destacar que os resultados utilizados na comparação usam o mesmo banco de dados históricos (demanda de carga elétrica) de uma companhia do setor elétrico brasileiro, bem como o mesmo período de janelamento |