Previsão de cargas elétricas através de um modelo híbrido de regressão com redes neurais

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Silva, Thays Aparecida de Abreu [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/87107
Resumo: Atualmente os sistemas elétricos de potência crescem em tamanho e complexidade e se faz necessário criar alternativas para minimizar o custo total de geração e operação. A previsão de cargas é uma tarefa importante para o planejamento e operação dos sistemas elétricos, pois dela dependem outras tarefas como despacho econômico, fluxo de potência, análise de estabilidade, entre outras. Para tanto esta tarefa deve ser precisa para que o sistema opere de forma segura e confiável. A precisão da previsão é de grande importância já que é através dela que é estabelecida quando e quanto de capacidade de geração e transmissão deve-se dispor para atender a carga prevista sem interrupções no fornecimento. O objetivo deste trabalho é desenvolver um modelo híbrido utilizando os modelos ARIMA de Box & Jenkins e Redes Neurais Artificiais com treinamento realizado pelo algoritmo de Levenberg-Marquartd. Este modelo será utilizado com a finalidade de melhorar a precisão dos resultados com relação à previsão de cargas elétricas a curto prazo. Os resultados obtidos através da metodologia proposta, modelo híbrido de regressão com redes neurais artificiais, foram comparados com demais trabalhos da literatura. É importante destacar que os resultados utilizados na comparação usam o mesmo banco de dados históricos (demanda de carga elétrica) de uma companhia do setor elétrico brasileiro, bem como o mesmo período de janelamento