Associações entre borboletas frugívoras em áreas de floresta com diferentes históricos de perturbação antrópica

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Guidelli, Rodrigo Vieira [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/136421
Resumo: Em 2009 Uehara Prado et al., coletaram uma grande quantidade de dados para avaliar o papel das borboletas da família Nymphalidae como bioindicadoras, porém esses dados não foram utilizados em sua totalidade. O presente estudo está direcionado à experimentação e modelagem de interações ecológicas, a partir dos dados obtidos por Uehara-Prado et al. (2009), juntamente com aqueles não previamente utilizados que, no intuito de extrair o máximo de informação de relevância biológica e ecológica. Para tanto, foram utilizados três diferentes tipos de abordagens: (1) Biclusterização (Cheng & Church, 2000; Madeira & Oliveira, 2004); (2) Árvores de decisão (Quinlan, 1986; Bell, 1999; De’ath & Fabricius, 2000; Olden et al., 2008) e (3) Redes Bayesianas (Korb & Nicholson, 2003; McCann et al., 2006; Chen & Pollino, 2012; Pearl, 2014). Os resultados se mostraram bastante promissores, e as três ferramentas atingiram as expectativas; em biclusterização, conseguimos identificar todos os padrões de correlação dentro dos cenários apresentados, árvores de decisão se mostraram extremamente eficazes na classificação das variáveis apresentadas e as Redes Bayesianas conseguiram identificar quais variáveis influenciavam ou eram influenciadas pelas outras. Com este trabalho esperamos incentivar outros pesquisadores à revisitarem antigas bases de dados com ferramentas computacionais mais modernas, pois seu potencial é extraordinário.