Caracterização gênica para uma anomalia de Eucalyptus em fase inicial de desenvolvimento
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11449/123896 http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/12-06-2015/000829952.pdf |
Resumo: | Eucalyptus is one of the most important genus in worldwide forestry culture. For this reason forest improvement programs are developed aiming the increase of productivity, the introduction of desirable traits and the reduction of environmental impacts. However deleterious traits can be incorporated in certain crossings through the recurrent improvement cycles either by biparental inbreeding or by segregation of the heterozygous loci. Anomalies are an example of this deleterious effect and they can cause losses in seedling production, productivity and delays in the elite genotypes development. Thus, the identification and characterization of genes related to the anomalies are very important in forest improvement programs. In a controlled cross between two Eucalyptus grandis individuals, the Suzano Papel and Celulose SA company has detected an anomaly with Mendelian segregation ratio of 3 (normal) :1 (abnormal) in the progeny. Abnormal seedlings die in a few months and show significant difference in some morphological characteristics, such as height, stem-base diameter, dimensions and shape of leaf lamina, and number of branches. Previous studies allowed the identification of a molecular marker related to the anomaly that showed identity with Bet v1 superfamily genes, PR10 family (pathogenesis-related protein 10). However, it was not clear the involvement of this gene family in the anomaly. In this scenario, the present study aimed to identify and characterize the genes involved in the detected anomaly. Genes and metabolic pathways, differentially expressed between the contrasting phenotypes, showed high activity of process related to defense response in abnormal plants. These results suggest that the anomaly is caused by the inappropriate activation of the immune system of the plant (autoimmune response) associated with genetic incompatibility. The gene families of thaumatin-like proteins, Bet v1 proteins, and chitinase class I proteins ... |