Um modelo baseado em algoritmo genético para seleção de características e classificação de padrões em imagens médicas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Taino, Daniela Fernanda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/192974
Resumo: A análise de imagens histológicas é baseada na avaliação visual dos tecidos por especialistas, utilizando um microscópio óptico. Essa tarefa pode ser demorada e desafiadora, principalmente devido à complexidade das estruturas e doenças sob investigação. Estes fatos motivaram o desenvolvimento de métodos computacionais para apoiar especialistas em pesquisas e tomadas de decisões. Apesar das diferentes estratégias computacionais disponíveis na literatura, as soluções baseadas em programação genética não foram totalmente exploradas para fornecer a melhor combinação de recursos, algoritmos de seleção e classificadores. Uma abordagem baseada em algoritmo genético, capaz de avaliar um número significativo de características, métodos de seleção e classificadores, é descrita para fornecer uma combinação aceitável para o diagnóstico e reconhecimento de padrões de linfomas não-Hodgkin e câncer colorretal. A estrutura cromossômica foi representada por quatro genes. A avaliação e seleção dos indivíduos, bem como os processos de cruzamento e mutação, foram definidos para distinguir os grupos investigados, com o maior valor da AUC e o menor número de características. Os testes foram realizados considerando 1.512 características de imagens histológicas, diferentes tamanhos de população, taxas de mutação e número de iteracções. Uma população inicial, de 50 indivíduos e 50 iterações, forneceu o melhor resultado para o câncer colorretal. Para os linfomas não-Hodgkin, a população inicial foi composta de 500 indivíduos e também foram necessárias 50 iterações para fornecer melhor resultado. Os valores da AUC foram de 0,984 e 0,947 para o câncer colorretal e os linfomas não-Hodgkin, respectivamente. A metodologia proposta, com informações detalhadas sobre os métodos, características e melhores combinações, é uma contribuição relevante para a comunidade interessada no estudo do reconhecimento de padrões em imagens histológicas de linfomas e câncer colorretal.