Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Souza, Juliana Marques de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/243431
|
Resumo: |
Modelos matemáticos que envolvem sistemas de Equações Diferenciais Ordinárias (EDO’s) podem apresentar descontinuidades que melhor representam o fenômeno observado do que se fosse usado um sistema de EDO’s contínuo. Neste trabalho, aplicamos a teoria de Sistemas Dinâmicos Suaves por Partes num modelo de trans- missão epidemiológico da COVID-19, baseado no modelo clássico SIR, em que a descontinuidade do modelo consiste na alternância entre realizar ou não políticas de quarentena/contenção - modelo SIR-X. O comportamento do sistema em algumas re- giões da variedade de descontinuidade pode ser analisado seguindo a formulação de Filippov, e, para isso, definimos tais regiões conforme o tipo de contato entre ela e o campo de vetores. Após a análise apresentada, conseguimos estabelecer o distanci- amento social mínimo necessário para o sistema de saúde não entrar em colapso. |