Avaliação da atividade eletromecânica uterina em ratas por biosusceptometria AC e eletromiografia

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Simões, Luís Gustavo de Oliveira [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/131904
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/06-10-2015/000850389.pdf
Resumo: The Uterus is a smooth muscle organ that contracts periodically due to the peacemaker cells located on myometrium. In vitro techniques are the most used to study the change in the uterine behavior, still they lack on promoting a real physiological analyses. This main purpose of this study was to apply the Alternating Current Biosusceptometry (AC Biosusceptometry or ACB) and the Electromyography (EMG) systems to evaluate uterine electrical and mechanical patterns in rats. The ACB technique registers the mechanical event by acquiring the displacement of the magnetic material inserted in the biological system, while the EMG register the electrical activity of the active muscular fiber by simulating the muscle itself. Both electrical and mechanical studies were conducted simultaneously. For this study, 20 non pregnant Wistar rats weighting between 200 and 300 g were submitted to the electrode and magnetic marker (MnFe2O4) implant surgery on the uterus serous. Thus, the contraction pattern during the entire estrous cycle was acquired, followed by the same study under influence of specific drugs (oxytocin and scopolamine butylbromide), which had the function to modify the contraction profile to confirm the method efficiency. Results showed two distinct contraction patterns for the uterus on its normal condition. The ACB and EMG systems acquired a high intensity and low frequency (13,62 ± 1,503 mHz to mechanic contraction and 13,17 ± 1,201 mHz to electrical contraction) pattern along with a low intensity and high frequency (62,52 ± 4,499 mHz to mechanical contraction and 65,08 ± 6,341 mHz to electrical one). Although regarding frequency and morphology, no differences were observed among the estrous cycle phases. Neither the oxitocyn nor the butylbromide showed relevant interference on the frequency pattern. For the amplitude, despite the oxytocin have not presented significant differences in neither the events (electrical and mechanical), ...