Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Zanelato, Augusto Izuka [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94203
|
Resumo: |
O presente trabalho tem por objetivo abordar aspectos fundamentais da teoria de imersão proposta por John Nash em 1954, na qual foi mostrado que uma variedade continua com derivada continuação nua C1, pode ser imersa em espaços euclidianos de 2n dimensões. Faz-se importante citar que ao longo do trabalho serão destacados aspectos inovadores do Teorema de Nash, tais como a não necessidade da hipótese de analitici-dade conforme havia sido usada anteriormente por Janet-Cartan, além do aspecto da perturbação que permite construir qualquer outra variedade imersa por uma sequência de deformações infinitesimais. São discutidos também extensões do Teorema de Nash, sobretudo os trabalhos de Greene e de Gunther, e aplicações do método perturbativo de Nash nas Teorias unificadoras da física. |