Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Utsumi, Alex Garcez [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/182224
|
Resumo: |
A voçoroca é o estágio mais avançado da erosão hídrica, causando inúmeros prejuízos para o meio ambiente e para o homem. Devido à extensão desse fenômeno e a dificuldade de acesso em campo, as técnicas de detecção automática de voçorocas têm despertado interesse, especialmente por meio da Análise de Imagens Baseada em Objetos Geográficos (GEOBIA). O objetivo desse trabalho foi mapear voçorocas utilizando a GEOBIA a partir de imagens RapidEye e dados SRTM, em duas regiões localizadas em Uberaba, Minas Gerais. Para isso, foi proposto aplicar o Índice de Avaliação da Segmentação (SEI) na etapa de segmentação da imagem. A criação das regras para detecção das voçorocas foi realizada de forma empírica, no software InterIMAGE, e de forma automática, a partir do algoritmo de árvore de decisão. A avaliação da acurácia foi realizada por meio dos coeficientes de concordância extraídos da matriz de confusão e, adicionalmente, a partir da sobreposição com dados de referência vetorizados manualmente. O índice SEI proporcionou a criação de objetos semelhantes às voçorocas, permitindo a extração de atributos específicos desses alvos. As regras de classificação do modelo empírico permitem detectar voçorocas nas duas áreas de estudos, ainda que essas feições ocupem uma pequena porção da cena. Os modelos empíricos alcançaram resultados satisfatórios: índice Kappa de 0,74 e F-measure de 53,46% na área 1, e índice Kappa de 0,73 e F-measure de 55,95% na área 2. A informação altimétrica mostrou ser um importante parâmetro para a detecção das voçorocas, de modo que ao retirar a declividade dos modelos empíricos houve redução do índice F-measure em 34,90% na área 1 e 28,65% na área 2. Os modelos gerados pelos algoritmos de árvore de decisão apresentaram desempenho inferior em função do número de voçorocas disponíveis para o treinamento do algoritmo e da impossibilidade de criar uma segmentação específica para cada classe de uso e cobertura do solo. |