Comparação de modelos aditivo, aditivo-dominante e de machine learning (LightGBM) na predição de híbridos de milho

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Missima, Jorge Otavio Domingos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/252267
Resumo: A escolha do método estatístico para predição dos valores genéticos genômicos em estudos de seleção genômica ampla (GWS) é fundamental para obtenção de elevadas acurácias preditivas. O objetivo deste estudo foi avaliar e comparar a performance de modelos paramétricos contendo efeito Aditivo (rrBLUP) e Aditivo-Dominante (BL), além de um modelo não paramétrico baseado em Machine Learning (LightGBM). Tais modelos foram aplicados na seleção genômica de híbridos de milho avaliados em três locais (Jataí-GO, Rolândia-PR e Sorriso-MT) para duas características importantes, produtividade e ciclo. Através dos resultados foi demonstrado que o modelo BL apresenta ótima estabilidade em termos de capacidade preditiva, porém sua performance computacional no treinamento dos modelos é consideravelmente inferior aos métodos rrBLUP e LightGBM. Caso o tempo computacional seja um gargalo para o desenvolvimento do estudo de seleção genômica, o modelo LightGBM que apresenta alta eficiência computacional, pode ser utilizado, entretanto essa utilização pode implicar em perda significativa de acurácia preditiva. Além disso, foi observado que a herdabilidade das características afeta a acurácia de predição dos modelos, e que os efeitos genéticos provenientes de herdabilidades menores podem ser capturados de maneira mais eficiente com o uso de modelos que incorporem efeitos aditivo-dominantes ou modelos de Machine learning.