Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Signorini, Caroline de Arruda [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/149892
|
Resumo: |
Nosso principal propósito neste trabalho é o estudo de condições necessárias e suficientes de otimalidade para problemas de Cálculo das Variações no contexto não-suave. Este estudo partirá da formulação básica suave, passando por problemas com restrições Lagrangianas, até o caso em que consideramos Lagrangianas não-suaves e soluções absolutamente contínuas. Neste caminho, abordaremos um importante avanço na teoria de Cálculo das Variações: os resultados de existência e regularidade de soluções. Além das condições necessárias, analisaremos as condições suficientes através de um conceito de convexidade generalizada, o qual denominamos E-pseudoinvexidade. |