Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Silva, Jairo Santos da [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/148872
|
Resumo: |
Foi mostrado recentemente que associado a um par de sequências reais (onde uma delas é uma sequência encadeada positiva) existe uma única medida de probabilidade não trivial com suporte no círculo unitário. No presente trabalho nossa principal contribuição é estudar o comportamento dessas medidas quando impomos algumas restrições de sinal e periodicidade sobre essas sequências. Precisamente, fornecemos uma estimativa para o suporte de tais medidas no caso em que a sequência que não é a sequência encadeada positiva satisfaz uma propriedade de sinal alternante. Além disso, quando esse par é tal que a sequência de parâmetros minimal da sequência encadeada positiva e a outra sequência são periódicas, mostramos que o estudo dessas medidas é completamente equivalente ao estudo de medidas associadas a coeficientes de Verblunsky periódicos: o que nos permite neste caso, apresentar, estudar e caracterizar um novo espaço de medidas no círculo unitário. Por fim, estabelecemos informações sobre o suporte essencial de medidas no caso limite periódico, isto é, quando as sequências reais associadas são limite periódicas. |