Diagnóstico de distúrbios de tensão em sistemas de distribuição de energia elétrica usando um algoritmo imuno-neural

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, James Clauton da [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/115849
Resumo: Nesta pesquisa, apresenta-se uma nova abordagem para o diagnóstico de distúrbios de tensão em sistemas de distribuição de energia elétrica, usando como ferramenta um algoritmo Imuno-Neural. Trata-se, basicamente, de realizar a junção de um algoritmo imunológico de seleção negativa com uma rede neural artificial ARTMAP-Fuzzy. Partindo-se das medições realizadas em uma subestação de distribuição por um sistema de aquisição de dados SCADA, um módulo imunológico é empregado para realizar a detecção, identificando anormalidades por meio de um janelamento das curvas oscilográficas, separando, desta forma, o sinal em parcelas menores para a análise. Assim, no módulo neural, a classificação das anormalidades é realizada. A principal aplicação desta nova ferramenta é auxiliar na tomada de decisões e facilitar a operação do sistema durante a ocorrência de perturbações de tensão. Visando ilustrar a eficiência do método proposto, foram realizadas simulações de sistemas de distribuição de energia elétrica contendo 33, 84 e 134 barras, respectivamente, usando-se o aplicativo EMTP. Os resultados obtidos com esta nova abordagem evidenciam uma melhoria em termos de eficiência e de precisão, quando comparados à literatura