Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Araujo, Elaynne Xavier Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/153015
|
Resumo: |
Neste trabalho é proposto o desenvolvimento de uma ferramenta computacional para o planeja-mento e despacho ótimo de fontes de potência ativa, considerando as incertezas das cargas (le-ve, nominal e pesada) e fontes de energia renováveis não despacháveis através de uma aborda-gem probabilística. O modelo matemático é um problema de programação não linear inteiro misto, multiobjetivo, não convexo e probabilístico na sua forma original sem a necessidade de realizar qualquer tipo de simplificação ou linearização tanto das funções objetivo como das res-trições. Um algoritmo baseado na meta-heurística Non-dominated Sorting Genetic Algorithm (NSGA-II) é proposto para resolver o problema de maneira eficaz. Os resultados obtidos com as simulações realizadas usando a implementação computacional nos sistemas de testes IEEE30 barras e IEEE118 barras mostram a eficiência e robustez da metodologia proposta. |