Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Oliveira, Wmerson Claro de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/194506
|
Resumo: |
Neste trabalho é proposto o desenvolvimento de uma ferramenta computacional para resolver o problema de fluxo de potência ótimo probabilístico. A função objetivo do problema considera simultaneamente a minimização de custos de geração e gases de efeito estufa. O modelo matemático contempla o despacho ótimo dos geradores despacháveis (hidráulicos e térmicos) e não despacháveis (geração eólica e fotovoltaica), controle da posição dos taps dos transformadores, e da ativação de compensação reativa shunt, além das incertezas das cargas e das fontes de energia não renováveis. As incertezas no comportamento do sistema são modeladas usando o método de estimação por pontos 2m+1. A formulação do problema de fluxo de potência ótimo (FPO) é um problema de programação não linear inteiro misto, multiobjetivo, não convexo e probabilístico. Para resolver este problema eficientemente é proposto um algoritmo matheurístico, que combina o modelo clássico não linear de FPO e a meta-heurística Variable Neighborhood Descent (VND). Para validar o algoritmo proposto, foram testados sistemas da literatura especializada em dois tipos de testes: o primeiro é dividido em duas partes e os resultados são comparados com um solver comercial, na parte 01 são testados diversos sistemas com número de barras que vão de 14 até 4661, considerando um problema mono-objetivo. Na parte 02 são testados os sistemas pglib_opf_case118_ieee e pglib_opf_case300_ieee considerando um problema multiobjetivo determinístico. O segundo tipo de teste considera um problema multiobjetivo probabilístico, que envolve as incertezas das variáveis de entrada, dos parâmetros que definem o comportamento da demanda e das fontes de geração renováveis. Os resultados obtidos com os testes realizados, usando a implementação computacional nos sistemas de testes, mostram a eficiência desta metodologia. |