Fluxo de potência otimo probabilístico com fontes de geração renováveis: abordagem através de técnica de ótimização matheurística

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Oliveira, Wmerson Claro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
VND
Link de acesso: http://hdl.handle.net/11449/194506
Resumo: Neste trabalho é proposto o desenvolvimento de uma ferramenta computacional para resolver o problema de fluxo de potência ótimo probabilístico. A função objetivo do problema considera simultaneamente a minimização de custos de geração e gases de efeito estufa. O modelo matemático contempla o despacho ótimo dos geradores despacháveis (hidráulicos e térmicos) e não despacháveis (geração eólica e fotovoltaica), controle da posição dos taps dos transformadores, e da ativação de compensação reativa shunt, além das incertezas das cargas e das fontes de energia não renováveis. As incertezas no comportamento do sistema são modeladas usando o método de estimação por pontos 2m+1. A formulação do problema de fluxo de potência ótimo (FPO) é um problema de programação não linear inteiro misto, multiobjetivo, não convexo e probabilístico. Para resolver este problema eficientemente é proposto um algoritmo matheurístico, que combina o modelo clássico não linear de FPO e a meta-heurística Variable Neighborhood Descent (VND). Para validar o algoritmo proposto, foram testados sistemas da literatura especializada em dois tipos de testes: o primeiro é dividido em duas partes e os resultados são comparados com um solver comercial, na parte 01 são testados diversos sistemas com número de barras que vão de 14 até 4661, considerando um problema mono-objetivo. Na parte 02 são testados os sistemas pglib_opf_case118_ieee e pglib_opf_case300_ieee considerando um problema multiobjetivo determinístico. O segundo tipo de teste considera um problema multiobjetivo probabilístico, que envolve as incertezas das variáveis de entrada, dos parâmetros que definem o comportamento da demanda e das fontes de geração renováveis. Os resultados obtidos com os testes realizados, usando a implementação computacional nos sistemas de testes, mostram a eficiência desta metodologia.