Explorando o infinito de Cantor e apresentando-o ao ensino médio

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Camargo, Bruno Aguiar Alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/191355
Resumo: O objetivo desse trabalho é apresentar, de forma rigorosa, como a matemática aborda o conceito de infinito e propor uma sequência de atividades para que o professor possa explorar esse tema com seus alunos de forma inovadora e estimulante. Muito do que é compreendido acerca do infinito se deve às ideias desenvolvidas por Georg Cantor, que estabeleceu a teoria dos números cardinais transfinitos, gerando uma série de resultados surpreendentes, que serão apresentados ao longo dessa dissertação. Cantor descobriu que existem diversos tipos de infinito e definiu critérios para classificá-los e compará-los. Para compreender esta teoria, é fundamental recordar os conceitos básicos da teoria de conjuntos e funções. Além disso, serão apresentados formalmente os números naturais através dos axiomas de Peano, bem como suas operações e propriedades. A partir deste, será construído o conjunto dos números inteiros, racionais e reais. Dessa forma, será possível definir formalmente a noção de conjunto finito e infinito, bem como a noção de conjuntos enumeráveis, e não-enumeráveis, e estabelecer critérios para comparar a cardinalidade de tais conjuntos. O trabalho é finalizado com a apresentação de uma proposta didática voltada para os alunos de ensino médio, sustentado no relato de duas experiências de sua aplicação. O tema é abordado utilizando atividades diferenciadas e fundamentadas no cotidiano, visando com isto contribuir para que os alunos apresentem um maior interesse e uma participação mais ativa nas aulas.