Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Camargo, Bruno Aguiar Alves de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/191355
|
Resumo: |
O objetivo desse trabalho é apresentar, de forma rigorosa, como a matemática aborda o conceito de infinito e propor uma sequência de atividades para que o professor possa explorar esse tema com seus alunos de forma inovadora e estimulante. Muito do que é compreendido acerca do infinito se deve às ideias desenvolvidas por Georg Cantor, que estabeleceu a teoria dos números cardinais transfinitos, gerando uma série de resultados surpreendentes, que serão apresentados ao longo dessa dissertação. Cantor descobriu que existem diversos tipos de infinito e definiu critérios para classificá-los e compará-los. Para compreender esta teoria, é fundamental recordar os conceitos básicos da teoria de conjuntos e funções. Além disso, serão apresentados formalmente os números naturais através dos axiomas de Peano, bem como suas operações e propriedades. A partir deste, será construído o conjunto dos números inteiros, racionais e reais. Dessa forma, será possível definir formalmente a noção de conjunto finito e infinito, bem como a noção de conjuntos enumeráveis, e não-enumeráveis, e estabelecer critérios para comparar a cardinalidade de tais conjuntos. O trabalho é finalizado com a apresentação de uma proposta didática voltada para os alunos de ensino médio, sustentado no relato de duas experiências de sua aplicação. O tema é abordado utilizando atividades diferenciadas e fundamentadas no cotidiano, visando com isto contribuir para que os alunos apresentem um maior interesse e uma participação mais ativa nas aulas. |