Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Vicentini, Jéssica [UNESP} [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://hdl.handle.net/11449/257181
|
Resumo: |
Modelos de linguagem têm sido amplamente adotados em várias aplicações de processamento de linguagem natural. Seu sucesso em tarefas como tradução automática, classificação e geração de texto impulsionou sua popularidade. No entanto, esses modelos são frequentemente considerados ``caixas-opacas'' devido à sua complexidade e dificuldade de interpretação. A falta de transparência e de entendimento interno desses modelos levanta questões sobre sua confiabilidade e limita sua adoção em cenários críticos, como a tomada de decisão em áreas sensíveis. Nesse contexto, o presente trabalho visa explorar técnicas de Inteligência Artificial Explicável para interpretar e entender o comportamento dos modelos de linguagem. Especificamente, foca nos métodos Model-Agnostic Explanations (LIME) e Integrated Gradients (IG). O estudo de caso envolve a análise da eficácia de modelos BERTimbau treinados no contexto da classificação de notícias em português brasileiro como reais ou falsas, utilizando os conjuntos de dados FakeRecogna e Fake.Br Corpus, e buscar compreender se esses métodos são eficazes para esse cenário. |