Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Pereira, Carlos José de Almeida [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/104426
|
Resumo: |
As técnicas de análise de dados e de busca de soluções fornecidas pela Computação Inteligente tiveram, nos últimos tempos, um grande avanço em seu desenvolvimento. Essas técnicas têm sido utilizadas com eficácia e eficiência no tratamento de problemas complexos e/ou que possuam uma grande quantidade de dados a serem processados. A integração destas técnicas com as ferramentas computacionais de produção e análise de informações geográficas (Geoprocessamento) é, portanto, muito vantajosa, especialmente com relação à grande quantidade de dados geralmente envolvida nas questões de natureza espacial. Este trabalho apresenta dois exemplos de uso de técnicas de Computação Inteligente em procedimentos de produção e análise de informações geográficas: um Sistema de Raciocínio Nebuloso (baseado na Lógica Nebulosa) para a construção de um mapa de fertilidade de solos, e uma Rede Neural Artificial para a identificação de agrupamentos espaciais em dados sócio-econômicos. Os dois exemplos foram conduzidos utilizando-se um software especialmente construído para esta finalidade, denominado GAIA – Geoprocessamento Apoiado por Inteligência Artificial –, e que doravante está disponível como Software Livre para qualquer pesquisador interessado em utilizar estas ferramentas. O estudo conclui que o uso das técnicas provenientes da computação inteligente, em comparação com técnicas tradicionais de análise de dados, contribuiu para um aumento da qualidade dos resultados obtidos. |