Modelos probabilísticos e não probabilísticos de classificação binária para pacientes com ou sem demência como auxílio na prática clínica em geriatria.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Galdino, Maicon Vinícius
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/192418
Resumo: Os objetivos deste trabalho foram apresentar modelos de classificação (Regressão Logística, Naive Bayes, Árvores de Classificação, Random Forest, k-Vizinhos mais próximos e Redes Neurais Artificiais) e a comparação destes utilizando processos de reamostragem em um conjunto de dados da área de geriatria (diagnóstico de demência). Analisar as pressuposições de cada metodologia, vantagens, desvantagens e cenários em que cada metodologia pode ser melhor utilizada. A justificativa e relevância desse projeto se baseiam na importância e na utilidade do tema proposto, visto que a população idosa aumenta em todo o mundo (nos países desenvolvidos e nos em desenvolvimento como o Brasil), os modelos de classificação podem ser úteis aos profissionais médicos, em especial aos médicos generalistas, no diagnóstico de demências, pois em diversos momentos o diagnóstico não é simples.