Aplicação de redes neurais artificiais na análise de dados de molhamento foliar por orvalho

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Mathias, Ivo Mário [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/101730
Resumo: O trabalho descrito nesta tese apresenta o desenvolvimento de um sistema computacional denominado PMNeural, baseado em Redes Neurais Artificiais (RNAs). A finalidade do sistema é o tratamento de dados climáticos e de molhamento foliar por orvalho, visando reconhecer padrões de comportamento de variáveis meteorológicas em relação ao molhamento foliar por orvalho. Para determinar as melhores arquiteturas e algoritmos de treinamento de RNAs, bem como, definir quais as variáveis climáticas que influenciam significativamente na ocorrência do molhamento foliar, foram utilizados dois simuladores: o simulador SNNS (Stuttgart Neural Network Simulator) versão 4.2, que utiliza plataforma operacional Linux e o simulador JavaNNS - Java Neural Network Simulator 1.1, com ambiente de execução Windows, o qual é baseado no SNNS. Foram utilizados dados climáticos de três estudos de caso, dois destes referentes à cultura do trigo, oriundos de locais e datas diferentes. Base de Dados 1 - Fazenda Capão do Cipó, em Castro - PR, safra de inverno de 2003. Base de Dados 2 - Campo Demonstrativo e Experimental da Fundação ABC - Fazenda Palmeirinha, em Piraí do Sul - PR., safra de inverno de 2005. Base de Dados 3 - Posto Agrometeorológico ESALQ/USP em Piracicaba - SP, período entre julho e setembro de 2005. Um quarto estudo de caso foi elaborado a partir dos arquivos dos estudos de casos 1, 2 e 3, utilizando-se as variáveis climáticas comuns, juntamente com seus respectivos índices de molhamento. Dentre os algoritmos de treinamento testados nos simuladores, o Resilient 2 Propagation (Rprop) foi o que apresentou as menores taxas de erro em relação aos outros...