Modelos Bayesianos hierárquicos espaciais para mapeamento de doenças - metodologia INLA - com aplicações em casos de Dengue e Chikungunya

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Domingues, Jacqueline [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/204530
Resumo: Modelos hierárquicos Bayesianos espaciais vem sendo amplamente utilizados para o mapeamento de doenças e, neste trabalho, objetivou-se analisar diferentes estruturas para o parâmetro espacial que compõe o modelo, como a recente reparametrização do clássico CAR, proposta por Simpson et al. (2015), a qual apresenta maior facilidade em definir e interpretar as distribuições a priori escolhidas. Além disso, analisou-se duas diferentes metodologias, o método de simulação, Monte Carlo via cadeia de Markov - MCMC e a Integrated Nested Laplace Approximations - INLA, determinístico e bastante flexível, que utiliza aproximação de Laplace aninhada simplificada para calcular diretamente aproximações muito precisas para as distribuições marginais posteriores. Foram realizados estudos tanto em conjuntos de dados simulados, quanto em duas aplicações em epidemiologia: dados de ocorrências de Dengue e de ocorrências de Chikungunya, no Estado de São Paulo. Comparou-se também o desempenho de ambas as metodologias para dois cenários distintos, um de completa independência espacial e um de dependência espacial, as quais apresentaram resultados semelhantes. As conclusões são inovadoras e indicam que o INLA é tão bom quanto o MCMC para o ajuste de tais modelos e nas aplicações epidemiológicas notou-se que a Dengue e a Chikungunya, apesar de apresentarem o Aedes aegypti como vetor transmissor comum, possuem padrões espaciais diferentes, o que indica a possibilidade de um outro vetor, o Aedes albopictus ter maior influência na incidência de Chikungunya, por exemplo. Tais análises permitem que novas hipóteses sejam exploradas visto que não se tem conhecimento de trabalhos realizados neste contexto e em conjuntos de dados semelhantes aos aqui utilizados.