Aplicação da equação de Fokker-Planck no estudo de canais iônicos
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11449/127824 http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/14-09-2015/000846735.pdf |
Resumo: | This work focus on the use of the Fokker-Planck equation (FPE) to describe the diffusion through ionic channels located in the cell membrane. The channels are responsible by the control of the ionic chemical equilibrium between the internal and external cell environment. The regulation of the chemical equilibrium is related to its capacity of opening and closing (gating) and its selectivity. Initially, we brief by present of the Fokker-Planck equation, where we show its relation with the Langevin equation and the methods of solution to different models. Among the models mentioned, we focus on adoption of different temporal dependence in the drift term and diffusion coefficient. The solutions for these cases are obtained by an ansatz that satisfies the boundary conditions of the models. We associate these mathematic models of FPE with diffusion through ionic channels without consider the gating process. This association is done describing the change of the membrane potential when there is diffusion of ions between the inside and outside of the cell. Another aspect described by one of the models is the diffusion when there is the closing of the channel with the time. The result obtained for this case is compared with results from the literature. Finally, we present a brief discussion of the Fokker-Planck equation in a cylindrical coordinate system |