Classificação do grau de maturidade de morangos a partir de imagens usando classificadores supervisionados e redes convolucionais como extratoras de características

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Hamaguti, Érika Kayoko
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/257511
Resumo: Nos últimos anos, técnicas de Aprendizado de Máquina e Aprendizado Profundo têm sido aplicadas na pesquisa de morangos. Atualmente, identificar a maturidade dos morangos de forma eficiente e precisa é um desafio devido aos métodos tradicionais, que são baseadas na aparência ou composição química da fruta, serem caros e demorados. A classificação automática de morangos pode oferecer aos agricultores uma maneira mais precisa de avaliar a qualidade dos frutos. Este trabalho propõe a análise da eficiência de diferentes combinações de modelos supervisionados e Redes Neurais Convolucionais (CNNs) para classificar a maturidade dos morangos. Foram testadas 71 CNNs para extração de características das imagens, seguidas por uma redução de dimensionalidade com PCA e a aplicação de dez classificadores. Os melhores resultados foram obtidos com as CNNs da família ConvNeXt (ConvNeXtBase, ConvNeXtSmall e ConvNeXtTiny) e VGG (VGG16 e VGG19) em combinação com os classificadores Gradient Boosting, Histogram Based Gradient Boosting e SVM, alcançando acurácia acima de 72% e F1-Score acima de 78%. As combinações testadas demonstraram ser eficientes, proporcionando uma solução viável para a classificação precisa da maturidade dos morangos, potencialmente beneficiando os agricultores com uma ferramenta mais eficaz e menos custosa.