O invariante E(G, W, M): algumas propriedades e aplicações na teoria de decomposição de grupos

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva, Letícia Sanches [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/127540
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/14-09-2015/000846965.pdf
Resumo: In [6], Andrade and Fanti defined the invariant E(G,W,M), where G is a group, W is a G-set and M is a Z2G-module, and presented some results using E(G,W, Z2) ( Z2 seen as a trivial Z2G-module) related to splitting of groups and duality. E(G,W,M) is defined using (co)homology of groups for the pair ((G,W),M) following [14]. The purpose of this work is to present the results given in [6] but adding proofs of some results that were referred but not proved there, such as the invariance ofE(G,W,M) for isomorphic pairs and the independence of the set of orbit representatives in W. We also attempt to generalize some results for any Z2G-m'odulo M (not necessarily Z2) and present some other properties of E(G,W,M), specially for the Z2G-module FTG where T is a subgroup of G, exploring, whenever possible, its relationship with splitting of groups. Many of those results are strongly related with some given in [7] for the invariant of pairs of groups E(G, S,M) where S is a family of subgroups of G.