Aplicação de métodos computacionais no estudo e na detecção da doença de Alzheimer

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Vicchietti, Mário Lucas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/236264
Resumo: A doença de Alzheimer (DA) pode ser entendida como uma demência progressiva do Sistema Nervoso Central, irreversível e de causa desconhecida. Em termos clínicos, a DA é caracterizada, principalmente, pela perda acelerada da capacidade intelectual e da memória, bem como pela desorientação no espaço e no tempo. Visto que a DA causa um grande impacto na qualidade de vida dos indivíduos e que a mesma é classificada como o tipo de demência mais recorrente entre pessoas com mais de 65 anos, o diagnóstico acurado da doença torna-se extremamente necessário para que o tratamento adequado seja iniciado. A eletroencefalografia (EEG) é uma técnica não invasiva e de baixo custo, capaz de mensurar o potencial elétrico proveniente das atividades neuronais e, por isso, tem sido amplamente empregada na investigação da DA. Nas últimas décadas, diversos métodos computacionais de análise de sinais de EEG têm sido propostos, mostrando que tais métodos podem ser utilizados com êxito no apoio ao diagnóstico e no estudo da progressão da doença. Dessa forma, o principal objetivo deste trabalho é aplicar as técnicas computacionais mais utilizadas na literatura para a detecção da DA em sinais de EEG de pacientes com e sem a doença, comparar a robustez de tais técnicas e identificar as propriedades dinâmicas dos sinais que discriminam esses grupos de pacientes.