Uso de redes neurais artificiais para detecção de pele em imagens digitais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Vicentini, Rafael Estéfano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/152329
Resumo: Na última década, o aumento da capacidade de processamento de informação em computadores e dispositivos de uso pessoal possibilitou o desenvolvimento de filtros e classificadores automatizados que operam em tempo real, aplicados em diversas áreas. No âmbito do Processamento Digital de Imagens associado às Redes Neurais Artificiais, os filtros emulam a percepção humana buscando por padrões para identificação de características de interesse. Filtros que têm por objetivo restringir o acesso a conteúdo impróprio partem da identificação de pele - principal indício de presença humana em uma imagem. Independentemente de sua complexidade e/ou robustez, caso o classificador não seja capaz de identificar as diferentes tonalidades de pele sob diferentes condições de captura, sua eficácia é prejudicada. Frente à diversificada forma de descrever uma tonalidade de pele usando diferentes espaços de cor, neste estudo foram destacados os espaços de cor RGB, YCbCr e HSV, amplamente utilizados em equipamentos de captura (por exemplo câmeras fotográficas e filmadoras digitais). A partir de exemplos apresentados durante a etapa de treinamento, as RNAs devem estar aptas para classificar as tonalidades em dois grupos distintos: pele e não pele. Dentre os espaços de cores indicados, seja utilizando ou descartando o aspecto da iluminação (critério amplamente discutido na literatura), este trabalho busca avaliar qual possui a maior taxa de detecção de pele em uma imagem.