Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Nakai, Mauricio Eiji [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/87180
|
Resumo: |
Cada vez mais se observa a substituição de peças metálicas por peças cerâmicas devido às suas excelentes propriedades físicas, químicas e mecânicas. No entanto, muitas destas características que fazem a cerâmica tão atrativa também dificultam a sua fabricação por métodos tradicionais de usinagem. Esse estudo teve como objetivo o desenvolvimento de modelos neurais baseados nos sinais de emissão acústica (EA) e potência de corte para estimar os valores de regosidades da peça bem como estimar o desgaste do rebolo durante o processo de retificação de cerâmicas avançadas. Para os ensaios foi utilizada uma máquina retificadora tangencial plana com rebolo diamantado e corpos de prova de cerâmica Alumina. Foram definidas três condições de cortes com profundidades de corte de 120um, 70 um e 20um, velocidade do rebolo de 35m/s e velocidade da mesa de 2,3m/s. Foram utilizados quatro modelos neurais, Redes Neurais Perceptron Múltiplas Camadas (MLP), Redes Neurais de Função de Base Radial (RBF), Redes Neurais de Regressão Generalizada (GRNN) e o Sistema de Interferência Adaptável Neuro-Fuzzy (ANFIS). Para melhor comparação entre os desempenhos dos modelos neurais utilizados no estudo foi desenvolvido um algoritmo para executar o treinamento de todas as combinações possíveis de entradas, assim como suas características, tais como a quantidade de neurônios, a quantidade de camadas e o espraiamento (define o tamanho do agrupamento). Os resultados mostraram um ótimo desempenho das redes neurais empregadas. Os erros obtidos foram menores que 0,5% para rugosidade média aritmética e menores que 4% para o desgaste da ferramenta. Os modelos neurais propostos satisfazem as necessidades da estimação da rugosidade bem como do desgaste da ferramenta, viabilizando a implementação futura em um hardware dedicado |