Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Piloto, João Victor |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/237284
|
Resumo: |
O Vírus Sincicial Respiratório humano (hRSV) é um dos principais causadores de doenças respiratórias agudas como bronquiolite e pneumonia em crianças e idosos. Atualmente, as patologias causadas pelo hRSV não são bem entendidas e as vacinas formuladas não apresenta efetividade e segurança suficientes. A infetividade do vírus está relacionada com suas proteínas de membrana e dentre elas a glicoproteína G ou proteína G, que é responsável pela ligação do vírus à célula epiteliais do trato respiratório do hospedeiro e consequente instalação da infecção. Esta glicoproteína exerce um importante papel como antígeno de reconhecimento, sendo alvo para identificação do RSV através de anticorpos. Há evidências na literatura de que a proteína G interage com um receptor celular, conhecido como CX3CR1, porém não existe informações estruturais experimentais sobre essa interação. O objetivo do trabalho foi caracterizar a interação da região conservada de cisteína do ectodomínio da proteína G com o receptor celular CX3CR1 utilizando ferramentas computacionais. A partir da abordagem de modelagem molecular, modelos estruturais para as quatro isoformas do receptor celular foram calculados, os quais passaram por uma etapa de 300 ns de simulação de dinâmica molecular em bicamada lipídica de POPC para avaliação de suas estabilidades estruturais. Em seguida, cálculos de docking molecular buscaram pela conformação mais provável do peptídeo da região conservada de cisteína da G na interação com a região N-terminal do barril de alfa-hélices do CX3CR1. Por fim, novas simulações de 300 ns reportaram a estabilidade estrutural do modelo proposto para o complexo CX3CR1/peptídeo da G (CX3CR1/G), apontando os resíduos LYS-171, GLY-177, TYR-179, GLN-184 e ARG-272 da proteína como importante para a formação de pontes de hidrogênio com o peptídeo. Os cálculos de PCA e de RMSF mostraram uma comparação entre as formas livres e ligadas, mostrando um maior grau de flexibilidade das regiões N e C-terminais, assim como uma maior flexibilidade das alças entre as hélices α das isoformas doCX3CR1. Os cálculos de energia livre de ligação teórica (MM/PBSA) mostraram que os resíduos ácidos interagem de forma favorável para a ligação e manutenção do peptídeo da G na região do docking, indicando que a isoforma 1 do CX3CR1 é aquela com energia de ligação mais favorável para a interação com o peptídeo da G. As informações estruturais produzidas no presente trabalho podem trazer luz ao mecanismo de interação da proteína G do hRSV com o receptor celular CX3CR1, assim como proporcionar uma caracterização molecular do processo de adesão do vírus à célula do hospedeiro. |