Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Takahashi, Natália Gonçalves [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/150860
|
Resumo: |
A busca pela diversificação de fontes da matriz energética, priorizando fontes renováveis, acarreta no maior consumo de etanol de primeira geração, podendo este ser insuficiente em suprir a necessidade da frota brasileira. Dessa forma, o etanol de segunda geração (E2G) surge como uma alternativa para aumento da produção de combustíveis renováveis. Ele é produzido a partir da fermentação dos resíduos de glicose após a quebra da celulose presente na biomassa vegetal. Contudo, além da celulose, a biomassa vegetal é também composta pela lignina, composto considerado recalcitrante no processo de obtenção deste tipo de etanol. Para transpor este obstáculo, é necessário encontrar maneiras de diminuir a quantidade ou modificar a composição da lignina. Fatores de transcrição (FTs) são alvos altamente promissores para a modificação deste polímero, uma vez que estão envolvidos com a regulação de sua via de biossíntese, bem como, da formação de toda parede celular secundária (PCS). Plantas de arroz transformadas para a superexpressão de AtSHN2 de Arabdopsis, apresentaram uma diminuição na quantidade de lignina e mostraram uma modulação na via de celulose, enquanto que a superexpressão do outro gene SHN de Arabidopsis (AtSHN1) em Arabidopsis apresentou uma modificação na via de biossíntese de cera e cutina. Isto ressalta a necessidade de avaliar os FTs de maneira espécie-específica. Assim sendo, este trabalho vem com o objetivo de ajudar a elucidar os mecanismos de funcionamento do FT SHINE (SHN), considerado um potencial regulador da PCS em gramíneas. Para a caracterização do FT SbSHN em sorgo foi primeiramente realizado um alinhamento de sequências de aminoácidos, contendo as proteínas codificadas pelos dois genes SHN em sorgo (SbSHN1 – Sb04g006970 e SbSHN2 – Sb10g023600) com outras sequências SHN disponíveis na literatura. Em seguida foi gerada uma árvore filogenética contendo todos esses mesmos SHN. Após isso, foi realizada a clonagem do FT SbSHN1 em vetor comercial pENTR/D-TOPO (Invitrogen), após verificação, a sequência foi recombinada com vetores de destino. Primeiramente, com o vetor pDEST15 para a expressão heteróloga da proteína SHN em E. coli.. De maneira complementar foi produzido um peptídeo sintético para reconhecimento da proteína SbSHN (anticorpo antiSHN). Posteriormente foi produzido um vetor contendo a sequencia de SHN em fusão com GFP, que foi utilizado para agroinfiltração de folhas de N. benthamiana, a fim de observar a localização subcelular do FT SbSHN. Para determinação da expressão através de qPCR em sorgo foram utilizados a folha, dividida em base e ponta, e a inflorescência, imatura e madura. Além disso, foi realizada a imunoprecipitação de cromatina (ChIP) das inflorescências imaturas e maduras de sorgo, com posterior análise inicial por ChIPqPCR para validação de alguns alvos de SbSHN. Como resultados, através da expressão heteróloga foi produzida uma proteína com massa de aproximadamente 52kDa (massa da proteína SHN adicionada de cauda GST), que foi reconhecida pelo anticorpo antSHN produzido. Foi confirmada a presença do FT SbSHN no núcleo celular, através de observação das folhas transformadas por agroinfiltração. As inflorescências imaturas de sorgo apresentaram maior expressão tanto de SbSHN1 quanto de SbSHN2. Com a técnica de ChIPqPCR foi possível validar in vivo os alvos SbNAC91 (Sb07g001550), SbNAC115 (Sb10g000460), SbMYB87 (Sb07g024970) e SbMYB60 (Sb04g031110) do FT SbSHN em sorgo. Em uma perspectiva de longo prazo, acredita-se que o conhecimento obtido a partir destes estudos não só fornecerão informações importantes sobre a função dos reguladores SHN em todo o reino vegetal, mas também fornecer uma poderosa ferramenta para a engenharia metabólica de compostos fenólicos e lignina por meio de melhoramento convencional ou abordagens transgênicas, impactando diretamente sobre a produção de E2G. |