Desenvolvimento de um bioprocesso utilizando-se resíduos para produção de amilases por Rhizopus oligosporus e etanol por Saccharomyces cerevisiae
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/11449/134058 http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/13-01-2016/000856523.pdf |
Resumo: | Amylases are enzymes belonging to the class of hydrolases acting on starch structure with the hydrolysis of glycosidic bonds of α-1,4 and α-1,6 types, in the interior of the chains of amylose and amylopectin, respectively. Currently they are responsible for about 30% of the world market enzymes and show a wide range of industrial applications. Fungi capable of producing amylases can grow by low cost inputs in solid-state fermentation (SSF), which enables the recovery of the agricultural industry by-products and provides support similar to that found by the microrganism in the natural environment. This study aims to produce amylase by Rhizopus microsporus var. oligosporus in solid-state fermentation using wheat bran as substrate partially to purify the crude enzyme extract obtained biochemically characterize the partially purified enzyme extract and subsequently to carry out the hydrolysis saccharification of starch present in broken rice and fermentation of it by Saccharomyces cerevisiae for ethanol production. Enzymatic activity of the raw extract was 39.8 U/mL equivalent to 358 U/g substrate. The purification ratio after the chromatography step was partial, but sufficient for the biochemical characterization of the produced extract was taken. These tests showed optimal range of pH 4.0 to pH 5.5 indicating the acidic condition as the best for this study. The pH stability was wide range of pH 3.5 to pH 8.5 with 40 to 60% relative activity. The optimum temperature for enzyme activity determined as optimum was 60 to 65 °C, but the enzyme was thermostable up to 60 °C. Ion effect of the amylolytic enzyme tests showed that the reaction Cu+2, Zn+2, Al+2 and Na+2 ions behaved like activity inhibitors. The Mn+2 ions distinguished for enhancing at about 60% relative enzymatic activity to hydrolysis without addition of ions. The enzymatic hydrolysis of broken rice using as substrate allowed the complete conversion of starch to reducing sugars ... |