Implicações da resiliência de biomoléculas e efeitos de substrato em ambientes planetários simulados de alta radiação para a detecção de bioassinaturas espectroscópicas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Gallo, Tamires Michelle [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/144271
Resumo: Esse trabalho visa avaliar como biomoléculas extraídas de micro-organismos podem ser preservadas no registro geológico, como proposta de bioassinaturas (ou biomarcadores), indicativas de vida presente ou passada. Essas moléculas podem sofrer transformações pelos ciclos geológicos e ação da radiação solar. O pigmento carotenoide proveniente da bactéria poliextremófila Deinococcus radiodurans foi analisado por espectroscopia Raman e reflectância difusa UV-Vis, incluindo misturas com diferentes substratos inorgânicos (FeO(OH), CaCO3, Al2O3, SiO2, solo simulado de Marte - Mars JSC1). Essas misturas foram expostas a três diferentes condições simuladas: a marciana, através de uma câmara de simulação ambiental (AstroCam), a UV ambiental terrestre, e ao ambiente espacial (VUV) na linha de luz TGM do LNLS. A degradação da biomolécula foi analisada em dois espectrômetros Raman (532 nm portátil e 785 nm de bancada), em um UV-Vis de bancada com uma esfera integradora, e na linha TGM, com sistema in situ de reflectância. Com os resultados obtidos concluímos que é possível a detecção, com as técnicas empregadas, dos biomarcadores analisados após exposição a diferentes ambientes, porém com possíveis limitações causadas pelos substratos presentes. Propomos a extrapolação dos resultados para experimentos in situ em missões espaciais, como no caso de Marte, para a detecção de bioassinaturas espectroscópicas.