Álgebras não associativas octoniônicas e relações extensivas do tipo De Moivre

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Pendeza, Cristiane Aparecida [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/94308
Resumo: O presente trabalho tem por objetivo apresentar uma anþalise dos octônios, bem como da álgebra octoniônica 8-dimensional, que, apesar de não associativos, são descritos para um número de estruturas excepcionais como por exemplo os grupos de Lie excepcionais e suas respectivas álgebras, favorecendo assim o entendimento das rotações de espaços euclidianos de dimensão inferior. Por essa razão se tornam fascinantes em aplicações nas diversas áreas da Matemática e Física. Apresenta-se também uma aplicação dos octônios na analogia da relação clássica de Moivre, e presentes conexões entre funções octoniônicas transcendentais e operadores diferencias da teoria de Fueter.