Análise da incerteza na representação de classes temáticas resultantes da aplicação de uma rede neural artificial

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Sabo, Letícia Andrade [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/86776
Resumo: Experimento baseado na aplicação de uma rede neural artificial para a classificação da cobertura do solo urbano de Presidente Prudente, SP, e na análise da incerteza na representação das classes temáticas mapeadas. A ambigüidade que caracteriza essas classes foi analisada através da distribuição espacial da probabilidade por classe, da incerteza por classe e da entropia, as quais foram posteriormente representadas em imagens em tons de cinza e mapas temáticos. Os resultados mostraram que o objetivo de discriminar as variações na cobertura do solo urbano através da aplicação de uma rede neural artificial na classificação foi atingido e, a partir das representações geradas, foi possível visualizar a variação espacial da incerteza na atribuição das classes de cobertura do solo urbano ao pixel. Além disso, foi possível verificar que a classe caracterizada por um padrão definido como intermediário, quanto à impermeabilidade do solo urbano, foi aquela que apresentou maior grau de ambigüidade e, portanto, maior mistura em relação às demais. A realização do experimento confirmou a expectativa inicial quanto ao potencial da rede neural artificial em discriminar classes de cobertura do solo urbano, caracterizadas pelo alto grau de mistura que apresentam, e representar espacialmente a incerteza associada a cada classe, desde que a aplicação de interesse seja cuidadosamente modelada.