Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Sanches, Isaac Silva Damasceno |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://hdl.handle.net/11449/253635
|
Resumo: |
Neste estudo, analisamos a quantidade de ciclos limite de uma equação diferencial diante de pequenas perturbações caracterizada por um parâmetro suficientemente pequeno. Empregamos o Método da Média de Primeira Ordem para simplificar a busca por órbitas periódicas em sistemas de equações diferenciais, transformando-a em uma tarefa de encontrar zeros de uma função de dimensão finita sob condições específicas. Além disso, aplicamos esse método a um conjunto de funções bem conhecidas, as funções Hamiltonianas, e utilizamos o Sistema Hamiltoniano de ArmbursterGuckenheimer-Kim como exemplo. Ao longo da análise, apresentamos três resultados principais do Método da Média. O primeiro estabelece condições para concluir que as soluções do sistema médio e do sistema perturbado são próximas. O segundo resultado mostra que, sob certas condições, o sistema perturbado possui uma solução T-periódica. Por fim, o terceiro resultado determina a estabilidade ou instabilidade desta solução. Essa análise aprofundada contribui significativamente para o entendimento da dinâmica dos sistemas estudados, possibilitando avanços na compreensão dos fenômenos observados. |