Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Caritá, Lucas Antonio [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94352
|
Resumo: |
Este trabalho é espelhado no livro “Teoria do Índice” [1] de Daciberg Lima Gonçalves e José Carlos de Souza Kiihl, publicado em 1983 no 14o Colóquio Brasileiro de Matemática pelo IMPA. Para a leitura deste trabalho é necessário uma familiaridade prévia com Topologia Algébrica, na qual indicamos [2] e [3] para consulta. Inicialmente apresentaremos alguns pré-requisitos algébricos e topológicos necessários para o desenvolvimento do trabalho e a seguir estudaremos: pontos fixos de aplicações contínuas de X em X, em que X é um espaço topológico; Grau de Brouwer de aplicações contínuas de Sn em Sn (ou respectivamente (Bn+1; Sn) em (Bn+1; Sn)); Grau Local de uma aplicação contínua f de V em Sn em torno de um ponto Q 2 Sn, em que V Sn é um aberto e f1(Q) é um compacto e Índices dos Pontos Fixos de uma aplicação contínua de V em Sn, em que V Rn é um aberto |