Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Cardin, Pedro Toniol [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94213
|
Resumo: |
Nesta dissertação estudamos critérios para determinar a existência, a não existência e a unicidade de ciclos limites de campos de vetores planares. Mais especificamente, estudamos equações de Lienard Äx + f(x; _ x) _ x + g(x) = 0; onde f e g satisfazem determinadas hip¶oteses. Em particular estudamos a equa»c~ao de van der Pol Äx + (x2 ¡ 1) _ x + x = 0; a qual é conhecida da teoria dos circuitos elétricos. Provamos a existência e a unicidade de ciclos limites para estas equações. Por fim estudamos a equação de van der Pol com o parâmetro 1 e o fenômeno canard que ocorre ao considerarmos um parâmetro adicional ®: As técnicas utilizadas s~ao as usuais de Análise Assintótica. |