Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Nigoghossian, Karina [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/108483
|
Resumo: |
Bacterial cellulose membranes were prepared containing upconverting nanoparticles of YVO4:Yb3+:Er3+/Ho3+ and a photosensitizer, Aluminum phthalocyanine chloride (AlClPc). The membranes were tested aiming applications as sensitizers in photoactivated processes (photodynamic therapy - PDT). The development of this new biomaterial was based on the purpose of applying these membranes topically over the area to be treated to release of the photosensitizer and its activation will occur locally under infrared light, that will be converted in visible light by upconverting nanoparticles. Emission properties have been optimized and the material with composition (mol%) YVO4:Yb3+:Ho3+ (79:20:1) showed up adequate with highest emission at the spectral region of absorption/excitation of the photoactive (630- 690nm). BC membranes production have also been optimized regarding thickness and optical transmission. Results showed that the incorporation of the photoactive molecules together with the upconverting nanoparticles is feasible. The photoactive incorporation efficiency was studied. Thinner membranes lead to higher relative efficiencies. Skin permeation and retention in vitro tests have been performed by using Franz cells and pigs ears as skin models. After 6, 12 and 24 hours, AlClPc was retained at the stratum corneum (0.5 g.cm-2) and dermis/epidermis (0.3 g.cm-2). The release system developed here presents potential for topical administration without possibility of systemic absorption that could lead to generalized photosensitization of the patient. The photosensitization through the visible upconverted emission of the nanoparticles under infrared excitation was observed. The 680 nm emission of the AlClPc together with the suppression of the red emission of the nanoparticles were clear evidence of the energy transfer process. Moreover the photophysical properties were evaluated at 1270 nm. The AlClPc oxygen generation was observed in the new... |