Densidade de Estados para o Modelo de Anderson Discreto

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Cueva Carranza, Yino Beto [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/180842
Resumo: O presente trabalho tem como objetivo principal estudar a densidade de estados para o modelo de Anderson discreto multidimensional. Tal modelo constitui uma família de operadores de Schrödinger aleatórios e ergódicos. Primeiramente estudamos propriedades espectrais, ergódicas e determinamos explicitamente o espectro do modelo de Anderson, o qual é um conjunto não aleatório q.t.p.. Abordamos também condições de fronteira simples, de Neumann e de Dirichlet para tais operadores atuando no espaço l2 restrito a cubos finitos. Em seguida discutimos a medida densidade de estados com duas abordagens diferentes e a sua conexão com o espectro do modelo de Anderson, mais geralmente com o espectro de um operador ergódico. Além disso, estudamos o fenômeno chamado Lifshitz tails para o modelo de Anderson discreto, que descreve o comportamento assintótico da densidade integrada de estados próximo ao ínfimo (ou supremo) do espectro. Por fim estudamos a subarmonicidade do expoente de Lyapunov, a fórmula de Thouless e a log- Hölder continuidade da densidade integrada de estados.