Elaboração de filtros Wavelets baseada em conhecimento para distinção de locutores autênticos e inautênticos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Almeida, Alex Marino Goncalves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/234753
Resumo: Os sistemas para autenticação biométrica baseados em voz têm ganhado cada vez mais espaço. Entretanto, a possibilidade de falsificação dos sinais acústicos dos locutores, principalmente utilizando-se de regravações, tem sido um obstáculo para a maior usabilidade dos referidos mecanismos biométricos. Assim, este trabalho de doutorado apresenta uma inovação no sentido de detectar sinais de vozes regravados: a formulação de filtros wavelet dedicados para identificar os replay attacks, com base em conhecimento. A técnica proposta confere conhecimento aos filtros utilizando-se de casos-exemplo autênticos e inautênticos de sinais de voz, o que não possui precedentes na literatura. No bojo dos experimentos elaborados neste trabalho constam o desenvolvimento de filtros baseados em conhecimento abrangendo uma ampla gama de propriedades físicas dos sinais, destacando-se skewness e kustosis, produzindo filtros de resposta ao impulso finita com suportes 6, 8, 12 e 16. Do conjunto de experimentos realizados, pode-se destacar o resultado em taxas de erros iguais (EER) igual a 1,96% para o filtro produzido com a propriedade física skewness e com suporte 12, equiparando-se, numa abordagem regular de decomposição tempo-frequência, ao melhor resultado obtido com a base pública ASVSpoof 2017 e demonstrando, assim, a efetividade da contribuição para o estado-da-arte.