Sistemas de adaptação ao locutor utilizando autovozes.

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Borges, Liselene de Abreu
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-05052003-104044/
Resumo: O presente trabalho descreve duas técnicas de adaptação ao locutor para sistemas de reconhecimento de voz utilizando um volume de dados de adaptação reduzido. Regressão Linear de Máxima Verossimilhança (MLLR) e Autovozes são as técnicas trabalhadas. Ambas atualizam as médias das Gaussianas dos modelos ocultos de Markov (HMM). A técnica MLLR estima um grupo de transformações lineares para os parâmetros das medias das Gaussianas do sistema. A técnica de Autovozes baseia-se no conhecimento prévio das variações entre locutores. Para obtermos o conhecimento prévio, que está contido nas autovozes, utiliza-se a análise em componentes principais (PCA). Fizemos os testes de adaptação das médias em um sistema de reconhecimento de voz de palavras isoladas e de vocabulário restrito. Contando com um volume grande de dados de adaptação (mais de 70% das palavras do vocabulário) a técnica de autovozes não apresentou resultados expressivos com relação aos que a técnica MLLR apresentou. Agora, quando o volume de dados reduzido (menos de 15% das palavras do vocabulário) a técnica de Autovozes apresentou-se superior à MLLR.